Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-125, 2024.
Article in Chinese | WPRIM | ID: wpr-1006276

ABSTRACT

ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS), to evaluate the establishment of a mouse model of liver Yin deficiency by thyroid tablet suspension combined with 10% carbon tetrachloride(CCl4) from the perspective of non-targeted metabolomics, in order to lay the foundation for the establishment of a traditional Chinese medicine(TCM) syndrome model. MethodA total of 24 mice were randomly divided into blank group and model group. The model group was given thyroid tablet suspension(0.003 2 g·kg-1) by gavage for 14 consecutive days, and 10% CCl4(5 mL·kg-1) was intraperitoneally injected once a week to establish a liver Yin deficiency model, while the blank group was injected with an equal amount of olive oil intraperitoneally and gavaged with an equal amount of distilled water, and was fed with normal feed. After the modeling was completed, 6 mice in each group were randomly selected, the levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), interleukin(IL)-6, IL-10, tumor necrosis factor-α(TNF-α)were measured in the mice serum, and malondialdehyde(MDA), superoxide dismutase(SOD), total protein(TP), hydroxyproline(HYP) and other indicators were measured in the mice liver. Liver tissue sections were taken for hematoxylin-eosin(HE) staining and observing pathological changes. The remaining 6 mice in each group were subjected to UPLC-Q-TOF-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to screen differential metabolites in the liver Yin deficiency mouse model, Kyoto Encyclopedia of Genes and Genomes(KEGG) database was used to analyze the corresponding metabolic pathways of differential metabolites. ResultCompared with the blank group, mice in the model group showed liver Yin deficiency manifestations such as reduced body weight, fatigue and sleepiness, disheveled and lusterless hair, irritability. The levels of ALT, cAMP/cGMP, IL-6, AST, MDA, cAMP, TNF-α significantly increased(P<0.05, P<0.01), while the levels of SOD, IL-10 and cGMP significantly decreased(P<0.05, P<0.01), and the changes of HYP and TP were not statistically significant. Hepatic steatosis and distortion of the radial arrangement of the liver plate cells were seen in the section images of the model group, endogenous substances were clearly separated, and 252 differential metabolites were identified in the serum samples, which were mainly involved in the metabolic pathways of purine metabolism, steroid hormone biosynthesis and pyrimidine metabolism. A total of 229 differential metabolites were identified in the liver samples, mainly involving nucleotide metabolism, purine metabolism, steroid hormone biosynthesis, pyrimidine metabolism, antifolate resistance, insulin resistance, primary bile acid biosynthesis, prostate cancer, sulfur relay system, arachidonic acid metabolism and other metabolic pathways. ConclusionThe successful establishment of liver Yin deficiency model in mice by CCl4 combined with thyroid hormone is evaluated through the investigation of serum and liver metabolomics, combined with biochemical indicators, which provides a biological basis and experimental foundation for the Yin deficiency syndrome model of TCM.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 166-174, 2024.
Article in Chinese | WPRIM | ID: wpr-1005266

ABSTRACT

ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 114-123, 2024.
Article in Chinese | WPRIM | ID: wpr-1003773

ABSTRACT

ObjectiveTo identify the prototypical components and metabolites absorbed into blood and cerebrospinal fluid of Schisandrae Chinensis Fructus(SCF) based on sequential metabolism combined with liquid chromatography-mass spectrometry. MethodBlood and cerebrospinal fluid samples of integrated metabolism, intestinal metabolism and hepatic metabolism were collected from male SD rats after gavage and in situ intestinal perfusion administration, and ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UPLC Q-Exactive Orbitrap MS) was used to analyze and compare the differences in the spectra of SCF extract, blank plasma, administered plasma, blank cerebrospinal fluid and administered cerebrospinal fluid with ACQUITY UPLC BEH Shield RP18 column(2.1 mm×100 mm, 1.7 µm), the mobile phase was acetonitrile(A)-0.1% formic acid aqueous solution(B) for gradient elution(0-7 min, 95%B; 7-12 min, 95%-35%B; 12-17 min, 35%-15%B; 17-20 min, 15%-12%B; 20-22 min, 12%-5%B; 22-23 min, 5%B; 23-25 min, 5%-95%B; 25-28 min, 95%B). And heated electrospray ionization(HESI) was used with positive and negative ion modes, the scanning range was m/z 100-1 500. The prototypical constituents and their metabolites absorbed into blood and cerebrospinal fluid of SCF were identified according to the retention time, characteristic fragments, molecular formulae and the information of reference substances. ResultA total of 42 chemical components were identified in the extract of SCF, including lignans, flavonoids, amino acids, tannins, and others, of which lignans were the main ones. A total of 27 prototypical components and 14 metabolites were identified in plasma samples from different sites. A total of 15 prototypical components and 9 metabolites were identified in cerebrospinal fluid. The main metabolic reactions involved in the formation of metabolites were mainly demethylation, methylation, demethoxylation and hydroxylation. ConclusionThrough the systematic identification of the prototypical components and metabolites of SCF in rats, it provides data support for further better exploring the material basis of SCF in the treatment of central nervous system diseases.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 148-155, 2024.
Article in Chinese | WPRIM | ID: wpr-1003419

ABSTRACT

ObjectiveBased on ultra performance liquid chromatography-mass spectrometry(UPLC-MS) and non-targeted metabolomics technology to discuss the central regulatory effect of Chaishao Liujuntang on chronic atrophic gastritis(CAG) rats with liver-depression and spleen-deficiency, and to look for the correlation between cerebral cortex, hypothalamus and metabolic status of gastric tissues. MethodA CAG rat model with liver-depression and spleen-deficiency was established by chemical induction, hunger and satiety disorders, chronic restraint and tail clamping stimulation, lasting for 16 weeks. Twenty-eight Wistar rats were randomly divided into a blank group of 8 rats and a model group of 20 rats. After the completion of modeling, 4 rats in the model group were taken to observe the pathological changes of gastric mucosa. The remaining model rats were randomly divided into a model group of 8 rats and a Chaishao Liujuntang group of 8 rats. Chaishao Liujuntang group rats were given 5.1 g·kg-1 by gavage, and the remaining rats were given equal volume sterilized water by gavage for 4 weeks. Macroscopic characteristics, behavioral indicators and histopathological changes of the gastric mucosa of rats in each group were observed and compared. UPLC-MS non-targeted metabolomics was used to explore the metabolic regulation effect of Chaishao Liujuntang on the cerebral cortex, hypothalamus and stomach tissues of CAG rats with liver-depression and spleen-deficiency. Pearson correlation coefficient method was used to analyze the correlation between different tissue metabolites. ResultCompared with the model group, the macroscopic characteristics of rats in Chaishao Liujuntang group were improved, such as hair color, mental state and stool properties, and the number of times of crossing and standing in the open field experiment was significantly increased, and the static time of forced swimming was significantly reduced(P<0.01), and the gastric mucosa atrophy was reduced. The metabolic data from the cerebral cortex of rats in each group identified a total of 3 common potential biomarkers, but not enriched in pathways, 26 common potential biomarkers were identified in the hypothalamus, and the key metabolic pathways involved were mainly enriched in purine metabolism, glycerol phospholipid metabolism, D-glutamine and D-glutamic acid metabolism. Seventeen common potential biomarkers were identified in the stomach, and the key metabolic pathways involved were mainly enriched in thiamine metabolism, valine, leucine and isoleucine biosynthesis, and taurine and taurine metabolism. Correlation analysis of metabolites in different tissues revealed that multiple amino acids and their derivatives mediated metabolic connections between the cerebral cortex, hypothalamus and stomach of rats. ConclusionThe metabolic disorders in the cerebral cortex, hypothalamus and stomach of CAG rats with liver-depression and spleen-deficiency have their own characteristics, mainly manifested by changes in the content of glycerol phospholipids, fatty acids and bile acid metabolites. Moreover, Chaishao Liujuntang may play a central regulatory role in CAG rats with liver-depression and spleen-deficiency by correcting the metabolic disorders of amino acids.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 134-143, 2023.
Article in Chinese | WPRIM | ID: wpr-953933

ABSTRACT

ObjectiveTo investigate the relative content changes of differential metabolites and reducing sugars during the processing process of Rehmanniae Radix Praeparata (RRP) processed with Amomi Fructus (AF) and Citri Reticulatae Pericarpium (CRP), and to lay the foundation for revealing the processing principle of this characteristic variety. MethodThe samples of the 0-54 h processing process of RRP processed with AF and CRP were taken as the research object, and their secondary metabolites were detected by ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The 0.1% formic acid aqueous solution (A)-acetonitrile (B) was used as the mobile phase for gradient elution (0-1 min, 1%-3%B; 1-10 min, 3%-9%B; 10-15 min, 9%-12%B; 15-22 min, 12%-18%B; 22-31 min, 18%-24%B; 31-35 min, 24%-100%B; 35-36 min, 100%-5%B; 36-40 min, 5%-1%B; 40-45 min, 1%B), column temperature was 40 ℃, injection volume was 3 μL, flow rate was 0.3 mL·min-1. Electrospray ionization (ESI) was used to scan and collect MS data in the negative ion mode, the scanning range was m/z 50-1 250. Data analysis was carried out using PeakView 1.2 software, and the chemical composition of RRP processed with AF and CRP was identified by combining the literature information and chemical composition databases. The MS data were normalized by MarkerView 1.2, and then the multivariate statistical analysis was applied to screen the differential metabolites, and the changes of the relative contents of the differential metabolites with different processing times was analyzed, finally, correlation analysis was performed between the differential metabolites, the change of the reducing sugar content was combined to determine the most suitable processing time of RRP processed with AF and CRP. ResultA total of 121 compounds were identified from RRP processed with AF and CRP at different processing times, and 12 differential metabolites were screened out by multivariate statistical analysis, including catalpol, hesperidin, isoacteoside, acteoside, narirutin, echinacoside, isomartynoside, decaffeoylacteoside, 6-O-E-feruloylajugol, dihydroxy-7-O-neohesperidin, jionoside D, and rehmapicroside. With the prolongation of processing time, the relative contents of these 12 differential metabolites and reducing sugars changed slightly at 52-54 h. ConclusionUPLC-Q-TOF-MS can comprehensively and accurately identify the chemical constituents of RRP processed with AF and CRP at different processing times, and the suitable processing time of 52-54 h is determined according to the content changes of different metabolites and reducing sugars, which provides a basis for revealing the scientific connotation of the processing principle of this variety.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 202-209, 2023.
Article in Chinese | WPRIM | ID: wpr-965664

ABSTRACT

ObjectiveTo develop a quality control method for the simultaneous determination of multiple active components in Nymphaeae Flos aiming at the problems of the single index for quality control and the relatively low overall quality control level. MethodUltra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS)was used to identify and select the index components for quality control with the mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B)for gradient elution (0-2 min, 3%-8%B; 2-4 min, 8%-10%B; 4-13 min, 10%-15%B; 13-19 min, 15%-20%B; 19-26 min, 20%-45%B) at a flow rate of 0.4 mL·min-1, detection wavelength of 350 nm, electrospray ionization(ESI), negative ion scanning mode, ion source temperature of 120 ℃, scanning range of m/z 100-1 200, transmit collision energy of 6 eV for low-energy scanning and 25-50 eV for high-energy scanning. High performance liquid chromatography(HPLC)was used to establish the quality control method for the simultaneous determination of multi-index components with the mobile phase of 0.2% phosphoric acid aqueous solution(A)-acetonitrile(B) for gradient elution(0-30 min, 12%-15%B; 30-60 min, 15%-22%B; 60-90 min, 22%-40%B)and detection wavelength of 350 nm. The preparation method of the test solution for content determination was refluxing extraction for 60 min with 80 times the amount of 70% methanol. ResultBy comparing the retention time, ultraviolet absorption characteristics, MS and MS/MS spectrometric signals in the samples with the reference substances, 8 active components with high contents, including brevifolincarboxylic acid, ellagic acid, rutin, nicotiflorin, astragalin, quercetin, quercetin-3-methylether and kaempferol, were identified qualitatively from Nymphaeae Flos, which were selected as the index components for quality control. Under the established HPLC conditions, the above 8 components could be well separated(resolution>1.5), and showed good linearity(r=0.999 9)between the concentration ranges of 1.99-99.6, 1.76-176, 1.52-75.8, 3.60-180, 0.964-96.4, 1.18-118, 1.94-96.8, 1.04-104 mg·L-1 and the peak areas, respectively. The detection limits of them were 10-49 μg·L-1, and the limits of quantitation were 34-164 μg·L-1. The average recoveries were 97.12%-103.1% with the relative standard deviations (RSDs) were 1.1%-2.2%. ConclusionA quality control method for simultaneous determination of the multiple active components in Nymphaeae Flos have been developed, which is simple, accurate and reproducible, and it can provide a scientific basis for the formulation of quality standard of this herb and lay a research foundation for the transformation of Uygur hospital preparations containing Nymphaeae Flos into new drugs.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 179-187, 2023.
Article in Chinese | WPRIM | ID: wpr-965661

ABSTRACT

ObjectiveTo study the metabolism of chemical components from Citri Reticulatae Pericarpium(CRP)in different parts of rats by sequential metabolism and ultra performance liquid chromatography-high resolution mass spectrometry(UPLC-HRMS). MethodSD male rats were employed as experimental subjects, and blood samples of intestinal metabolism and hepatic metabolism were prepared after administration of CRP ethanol extract by in situ intestinal perfusion, and comprehensive metabolic samples were collected after intragastric administration. UPLC-HRMS was used to analyze the samples with acetonitrile(A)-0.1% formic acid aqueous solution(B)as the mobile phase for gradient elution(0-10 min, 10%-30%A; 10-30 min, 30%-95%A; 30-31 min, 95%-10%A; 31-35 min, 10%A)at a flow rate of 0.35 mL·min-1, using a heated electrospray ionization with positive and negative ion mode scanning in the range of m/z 100-1 500. Under these conditions, the differences in the profiles of CRP ethanol extract, blank plasma and drug-containing plasma under different treatment groups were compared, and the chemical components of each sample were analyzed and identified based on the retention time, accurate relative molecular mass, primary and secondary ion fragments, and the information of reference substances. ResultA total of 44 chemical components were identified in the CRP ethanol extract, including flavone-O-glycosides, flavone-C-glycosides and polymethoxyflavonoids, etc. The results of sequential metabolism showed that 22 chemical components in CRP were detected in the intestinal metabolic sample, 18 chemical components were detected in the hepatic metabolic sample, and 9 identical chemical components(narirutin, hesperidin, meranzin, 5,7,8,3ʹ,4ʹ,5ʹ-hexamethoxy-flavone, isosinensetin, sinensetin, 3,5,6,7,8,3ʹ,4ʹ-heptamethoxyflavone, nobiletin and tangeretin)could be detected in all three metabolic samples, with a total of 22 compounds entering the blood in prototype form. ConclusionThe identified 21 components with well-defined structures entering the blood as prototypes may be potential active components of CRP, and differences in the components at different metabolic parts can provide an experimental basis for elucidating the in vivo biotransformation process of the metabolic components of CRP.

9.
China Journal of Chinese Materia Medica ; (24): 366-373, 2023.
Article in Chinese | WPRIM | ID: wpr-970473

ABSTRACT

An analytical method for 10 mycotoxins in Hippophae Fructus medicinal and edible products was established in this study, and the contamination of their mycotoxins was analyzed. First of all, the mixed reference solution of ten mycotoxins such as aflatoxin, ochratoxin, zearalenone, and dexoynivalenol was selected as the control, and the Hippophae Fructus medicinal and edible products were prepared. Secondly, based on the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) technology, 10 mycotoxins in Hippophae Fructus medicinal and edible products were quantitatively investigated and their content was determined. Finally, the contamination of mycotoxins was analyzed and evaluated. The optimal analysis conditions were determined, and the methodological inspection results showed that the 10 mycotoxins established a good linear relationship(r>0.99). The method had good repeatability, test sample specificity, stability, and instrument precision. The average recovery rates of 10 mycotoxins in Hippophae Fructus medicinal products, edible solids, and edible liquids were 90.31%-109.4%, 87.86%-107.8%, and 85.61%-109.1%, respectively. Relative standard deviation(RSD) values were 0.22%-10%, 0.75%-13%, and 0.84%-8.5%, repsectively. Based on UPLC-MS/MS technology, the simultaneous determination method for the limits of 10 mycotoxins established in this study has fast detection speed, less matrix interference, high sensitivity, and accurate results, which is suitable for the limit examination of 10 mycoto-xins in Hippophae Fructus medicinal and edible products.


Subject(s)
Mycotoxins/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Hippophae , Limit of Detection , Chromatography, High Pressure Liquid/methods
10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 183-191, 2023.
Article in Chinese | WPRIM | ID: wpr-969614

ABSTRACT

ObjectiveTo rapidly identify the chemical constituents in Tongxie Yaofang decoction by ultra-performance liquid chromatography-linear ion trap-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-LTQ-Orbitrap-MS). MethodChromatographic conditions were ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm), mobile phase of 0.1% formic acid aqueous solution(A)-acetonitrile(B) for gradient elution (0-4 min, 5%-15%B; 4-10 min, 15%-25%B; 10-15 min, 25%-60%B; 15-20 min, 60%-90%B; 20-25 min, 90%-100%B; 25-27 min, 100%B; 27-30 min, 100%-5%B; 30-32 min, 5%B), flow rate of 0.3 mL·min-1, column temperature at 35 ℃ and injection volume of 3 μL. UPLC-LTQ-Orbitrap-MS was equipped with an electrospray ionization(ESI), the MS and MS/MS data were collected in positive and negative ion modes, and detection range was m/z 100-1 250. Combining the reference substance, chemical databases and related literature information, TraceFinder 4.1 and Xcalibur 2.1 were used to identify the chemical constituents of Tongxie Yaofang decoction. ResultA total of 90 compounds, mainly including flavonoids, coumarins, monoterpene glycosides, chromones and lactones, were identified from Tongxie Yaofang decoction. By attributing the sources of Chinese medicines for all identified compounds, 9 of them were found to be derived from Atractylodis Macrocephalae Rhizoma, 21 from Paeoniae Radix Alba, 24 from Citri Reticulatae Pericarpium, 29 from Saposhnikoviae Radix, and 7 from at least two Chinese medicines. ConclusionThe method can effectively, quickly and comprehensively identify the chemical components of Tongxie Yaofang decoction, and clarify the chemical composition. These identified compounds cover the main active ingredients of the four herbs with high abundance, which indicates that the extraction method and the ratio of the medicinal materials of Tongxie Yaofang are scientific, and can provide a reference for the research on the material basis and quality evaluation of this famous classical formula.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 176-186, 2023.
Article in Chinese | WPRIM | ID: wpr-984596

ABSTRACT

ObjectiveA rapid method for identification of chemical constituents in Puerariae Lobatae Radix dispensing granules was established in order to clarify the material basis. MethodThe chemical constituents of Puerariae Lobatae Radix dispensing granules was qualitatively analyzed by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) under positive and negative ion modes, and the chromatographic conditions were on an ACQUITY UPLC HSS T3 column(2.1 mm×100 mm, 1.8 μm) with 0.1% formic acid aqueous solution(A)-0.1% formic acid acetonitrile solution(B) as mobile phase for gradient elution(0-4 min, 5%-10%B; 4-10 min, 10%-15%B; 10-20 min, 15%-16%B; 20-27 min, 16%-31%B; 27-33 min, 31%-59%B; 33-42 min, 59%-95%B; 42-42.1 min, 95%-5%B; 42.1-45 min, 5%B), the flow rate was 0.35 mL·min-1, the column temperature was 40 ℃, the injection volume was 5 μL, and electrospray ionization(ESI) was selected. Then these chemical constituents were comprehensively identified based on PeakView 1.2, PubChem, ChemicalBook, ChemSpider, comparative control profiles and literature information. ResultA total of 128 chemical constituents were identified from the dispensing granules, including 60 flavonoids, 26 organic acids, 7 glycosides, 6 coumarins, 3 nucleosides and 26 other compounds. By focusing on the cleavage patterns of flavonoids, organic acids, glycosides, coumarins, nucleosides and other compounds, 12 compounds that have not been reported in Puerariae Lobatae Radix species were identified from the dispensing granules. ConclusionThe established method can systematically and rapidly identify the chemical constituents in Puerariae Lobatae Radix dispensing granules, and cleared it composition is mainly flavonoids and organic acids. Laying a foundation for the study of the material basis, mechanism of action and clinical application of the dispensing granules.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 168-175, 2023.
Article in Chinese | WPRIM | ID: wpr-984595

ABSTRACT

ObjectiveTo characterize the efficacy components of Guizhi Jia Gegentang(GGT) in intervening influenza virus pneumonia by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS). MethodBALB/c mice were randomly divided into normal group and GGT group(36 g·kg-1·d-1) with six mice in each group. GGT group was continuously administered GGT extract for 5 d, while the normal group was administered an equal amount of ultrapure water. Serum and lung tissue were collected after administration, and UPLC-Q-Exactive Orbitrap MS was used to characterize the prototypical and metabolic components of GGT in serum and lung tissue of mice. The components existed simultaneously in the serum and lung tissue of mice from the GGT group were defined as its functional components, and the targets of efficacy components were searched by SwissTargetPrediction database, and GeneCards database was used to query the target of influenza virus pneumonia, and then the intersection was taken to obtain potential targets of GGT for intervening in the disease. Protein-protein interaction(PPI) network analysis of potential targets was performed by STRING database, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis on potential targets was performed by Metascape. ResultA total of 29 prototypical components and 28 metabolic components of GGT were detected in the drug-containing serum of mice, of which 11 prototypical components and 4 metabolic components were detected in the lung tissue of mice. The main metabolic pathways included reduction, hydroxylation, methylation, glucuronidation and sulfation. The results of PPI network and KEGG analysis showed that these functional components may act through their effects on targets such as albumin(ALB), epidermal growth factor receptor(EGFR), steroid receptor coactivator(SRC), Toll-like receptor 4(TLR4), nuclear transcription factor(NF)-κB and adhesion junction. ConclusionThe 11 prototypical components and 4 metabolites present simultaneously in the drug-containing serum and lung tissue of mice may be the potential therapeutic components of GGT in interfering with influenza viral pneumonia, and act through interfering with inflammatory metabolic pathways. This study can provide a reference for the mechanism study of GGT in the treatment of influenza viral pneumonia.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 150-156, 2023.
Article in Chinese | WPRIM | ID: wpr-975167

ABSTRACT

ObjectiveTo analyze the migrating components absorbed into blood of the aqueous extract of Euphorbia helioscopia, and to explore the pharmacodynamic material basis of the aqueous extract of E. helioscopia against chronic obstructive pulmonary disease(COPD). MethodUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detecte the migrating components absorbed into blood of rats after intragastric administration of aqueous extract of E. helioscopia. An Agilent RRHD SB-C18 column(3 mm×100 mm, 1.8 μm) was used with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as the mobile phase for gradient elution(0-15 min, 5%-30%B; 15-20 min, 30%-50%B; 20-30 min, 50%-95%B; 30-35 min, 95%-5%B), and the detection wavelength of 190-800 nm, column temperature of 40 ℃, flow rate of 0.3 mL∙min-1 and injection volume of 4 μL. The electrospray ionization(ESI) was used in positive and negative ion modes, and the detection range was m/z 50-1 250. Network pharmacology was used to screen out the key components and the key targets of COPD through the interaction analysis. Metascape database was used to predict the molecular function, biological process, cellular composition and signal pathways mainly involved in the anti-COPD effect of E. helioscopia. Molecular docking technique was used to determine the affinity of key targets with key components. ResultA total of 29 migrating components absorbed into blood of rats were identified after intragastric administration of aqueous extract of E. helioscopia, 9 of which were prototype components and 20 were metabolites. Network pharmacological analysis showed that luteolin, quercetin, apigenin, naringenin and helioscopinolide C were the key components of E. helioscopia against COPD, and vascular endothelial growth factor A(VEGFA), albumin(ALB), protein kinase B1(Akt1), tumor necrosis factor(TNF) and interleukin-6(IL-6) were the key targets. Molecular docking results showed that one diterpene lactone(helioscopinolide C) and three flavonoids(naringenin, luteolin, apigenin) in the migrating components absorbed into blood all had strong binding activity to the key targets of E. helioscopia against COPD. ConclusionNaringenin, helioscopinolide C, luteolin and apigenin may be the main anti-COPD active substances of E. helioscopia.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 140-150, 2023.
Article in Chinese | WPRIM | ID: wpr-973755

ABSTRACT

ObjectiveTo study the potential quality marker (Q-marker) of Tinosporae Radix associated with efficacy of "relieving sore throat" based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), multivariate statistical analysis (MSA), and network pharmacology. MethodUPLC-Q-TOF-MS was used to identify the main chemical components in 18 batches of Tinosporae Radix. On this basis, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed to screen out the main marker components that caused differences between groups. Moreover, network pharmacology technology was applied to predict the potential "sore throat-relieving" components, and the molecular docking between the common components resulting from MSA and network pharmacology and the core targets was carried out to verify the marker components. ResultA total of 17 compounds, including alkaloids, diterpenoid lactones, and sterols, were identified by UPLC-Q-TOF-MS. Five main differential components were found by MSA: Columbamine, jatrorrhizine, palmatine, menisperine, and columbin. Network pharmacology analysis yielded six compounds: tetrahydropalmatine, palmatine, menisperine, fibleucin, neoechinulin A, and columbin which were selected as potential "sore throat-relieving" components of Tinosporae Radix. They may relieve sore throat by acting on interleukin-6, epidermal growth factor receptor, prostaglandin G/H synthase 2, matrix metalloproteinase-9, proto-oncogene tyrosine-protein kinase Src and other targets, and regulating Hepatitis B, influenza A, human T-cell virus infection, human cytomegalovirus infection, coronavirus disease-2019, and other signaling pathways. The common active components in Tinosporae Radix resulting from MSA and network pharmacology analysis were palmatine, menisperine, and columbin, which had high binding affinity with six core targets and can be used as the Q-marker components of Tinosporae Radix in "relieving sore throat". ConclusionThis study predicts the "sore throat-relieving" Q-marker of Tinosporae Radix, which lays a basis for developing the quality standard of Tinosporae Radix based on the efficacy and improving the quality evaluation system of the medicinal.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 112-121, 2023.
Article in Chinese | WPRIM | ID: wpr-973752

ABSTRACT

ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MSE) technique, we identified qualitatively the metabolites of aristolochic acid(AAs) in rat in order to analyze the metabolic differences between water extract of Aristolochiae fructus(AFE) and Aristolochic acid Ⅰ(AAⅠ). MethodSD rats were selected and administered AFE(110 g·kg-1·d-1) or AAⅠ(5 mg·kg-1·d-1) by oral for 5 days, respectively. Serum, urine and feces were collected after administration. Through sample pretreatment, ACQUITY UPLC BEH C18 column(2.1 mm×100 mm, 1.7 μm) was used with the mobile phase of 0.01% formic acid methanol(A)-0.01% formic acid water(B, containing 5 mmol·L-1 ammonium acetate) for gradient elution(0-1 min, 10%B; 1-7 min, 10%-75%B; 7-7.2 min, 75%-95%B; 7.2-10.2 min, 95%B; 10.2-10.3 min, 95%-10%B; 10.3-12 min, 10%B) at a flow rate of 0.3 mL·min-1. Positive ion mode of electrospray ionization(ESI+) was performed in the scanning range of m/z 100-1 200. In combination with UNIFI 1.9.4.053 system, the Pathway-MSE was used to qualitatively analyze and identify the AAs prototype and related metabolites in biological samples(serum, urine and feces), and to compare the similarities and differences of metabolites in rats in the subacute toxicity test between AFE group and AAⅠ group. ResultCompared with AAⅠ group, 6, 10, 13 common metabolites and 14, 20, 30 unique metabolites were identified in biological samples(serum, urine and feces) of AFE group, respectively. Moreover, the main AAs components always followed the metabolic processes of demethylation, nitrate reduction and conjugation. Compared with common metabolites in AAⅠ group, prototype components of AAⅠ in serum and most metabolic derivatives of AAⅠ[AAⅠa, aristolochic lactam Ⅰ(ALⅠ)a, 7-OHALⅠ and its conjugated derivatives] in biological samples were significantly increased in AFE group(P<0.05, P<0.01), except that the metabolic amount of ALⅠ in feces of AFE group was remarkably lowed than that of AAⅠ group(P<0.01). In addition, a variety of special ALⅠ efflux derivatives were also identified in the urine and feces of the AFE group. ConclusionAlthough major AAs components in AFE all show similar metabolic rules as AAⅠ components in vivo, the coexistence of multiple AAs components in Aristolochiae Fructus may affect the metabolism of AAⅠ, and achieve the attenuating effect by increasing the metabolic effection of AAⅠ and ALⅠ.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 169-176, 2023.
Article in Chinese | WPRIM | ID: wpr-998176

ABSTRACT

ObjectiveTo investigate the transformation mechanism and content variation of saponins from Polygalae Radix before and after being boiled with licorice juice and water. MethodSimulated licorice juice boiled products and simulated water boiled products of onjisaponin B, onjisaponin Z, onjisaponin F, polygalasaponin ⅩⅩⅧ were prepared by simulated processing technology, and analyzed by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high resolution mass spectrometry(UPLC-Q-Exactive Orbitrap/MS). Then the contents of onjisaponin B, onjisaponin Z, onjisaponin F, polygalasaponin ⅩⅩⅧ and tenuifolin in Polygalae Radix, licorice-boiled Polygalae Radix and water-boiled Polygalae Radix were determined by UPLC-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS). ResultDuring the boiling process with licorice juice and water, onjisaponin B could be hydrolyzed to produce 4-methoxycinnamic acid, desacylsenegin Ⅲ, polygalasaponin ⅩⅩⅧ and tenuifolin, onjisaponin Z could be hydrolyzed to produce 3,4,5-trimethoxycinnamic acid, onjisaponin TF, polygalasaponin ⅩⅩⅧ and tenuifolin, onjisaponin F could be hydrolyzed to produce 3,4,5-trimethoxycinnamic acid, onjisaponin G, polygalasaponin ⅩⅩⅧ and tenuifolin, and polygalasaponin ⅩⅩⅧ was hydrolyzed to produce tenuifolin. After being boiled with licorice juice or water, the content of onjisaponin B decreased significantly(P<0.05, P<0.01), but the contents of onjisaponin Z, onjisaponin F, polygalasaponin ⅩⅩⅧ and tenuifolin increased significantly(P<0.05, P<0.01) in Polygalae Radix. Compared with the water-boiled products, the contents of onjisaponin Z and tenuifolin increased significantly(P<0.05, P<0.01), and the change of tenuifolin content was the most significant in the licorice-boiled products.However, there was no significant difference in the content of onjisaponin B, onjisaponin F and polygalasaponin ⅩⅩⅧ between the water-boiled products and the licorice-boiled products. ConclusionBeing boiled with licorice juice or water can hydrolyze onjisaponin B, onjisaponin Z, onjisaponin F and polygalasaponin ⅩⅩⅧ, and generate secondary glycosides and aglycones(organic acids) through deglycosylation, which leads to obvious changes in the contents of onjisaponins after Polygalae Radix being processed.It is inferred that licorice juice can promote the hydrolysis of some onjisaponins in Polygalae Radix to onjisaponin Z and tenuifolin.This study provides an experimental basis for revealing processing mechanism of Polygalae Radix.

17.
Digital Chinese Medicine ; (4): 328-340, 2023.
Article in English | WPRIM | ID: wpr-997736

ABSTRACT

Objective@#To investigate the metabolic trajectory of kidney aging and the effects of Polygonatum sibiricum polysaccharides (PSP) against kidney aging in D-galactose (D-gal)-induced aging mice, based on ultra-performance liquid chromatography/Q-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive MS/MS). @*Methods@#A total of 36 C57 BL/6J mice were randomly allocated to six groups: control (CON), model (MOD), PSP low-dose (PSP-L), PSP medium-dose (PSP-M), PSP high-dose (PSP-H), and positive drug ascorbic acid (VC) groups. To create models of aging mice, D-gal was intraperitoneally administered to all other groups of mice except the CON group. After modeling, the appropriate Chinese medicine [PSP-L: 150 mg/(kg·d), PSP-M: 300 mg/(kg·d), PSP-H: 600 mg/(kg·d)] or positive drug [ascorbic acid, 300 mg/(kg·d)] was administered for intervention. Key markers of renal function in urine and serum of mice in each group, such as creatinine (Crea), urea nitrogen (BUN), and uric acid (UA) levels, as well as key indicators of oxidative stress in serum and kidney, including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) were determined to validate the successful establishment of kidney aging models and to estimate the effects of PSP. Hematoxylin and eosin (HE), periodic acid Schiff (PAS), and β-galactosidase staining were used to assess the renal pathological changes. The metabolic profiles of serum, kidney, and urine samples from CON, MOD, and PSP-H groups were analyzed by UPLC-Q-Exactive MS/MS, and pattern recognition methods were used to outline the metabolic trajectory of kidney aging and to identify the characteristic metabolites. @*Results@#Age-related alterations in renal histopathology and impaired renal function in mice were also associated with oxidative stress indicators. Following the injection of PSP [PSP-H: 600 mg/(kg·d)], the pathological indices associated with aging were adjusted to normal levels, renal function and oxidative stress were improved in aging mice, and renal pathological damage was markedly improved. Meanwhile, the potential biomarkers were identified by UPLC-Q-Exactive MS/MS analysis and were further analyzed to form related metabolic pathways, with P < 0.05 as a threshold. The results showed that purine, sphingolipid, glycerophospholipid, tryptophan, and riboflavin metabolisms were the main metabolic pathways associated with aging. After administration of PSP, these pathological indices returned to normal levels, and biomarkers related to the aging process, such as adenosine monophosphate (AMP), tryptophan, and 5-hydroxytryptophan, also demonstrated, to some degree, reverse regulation (promoting synthesis). @*Conclusion@#Metabolomics methods based on UPLC-Q-Exactive MS/MS and multivariate statistical analysis can be adopted to establish metabolic profiles in aging mice. PSP has been shown to protect against kidney aging by interfering with the purine, sphingolipid, glycerophospholipid, tryptophan, and riboflavin metabolisms in the kidney.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 140-149, 2023.
Article in Chinese | WPRIM | ID: wpr-997667

ABSTRACT

ObjectiveTo explore the material basis of bile-processed Coptidis Rhizoma clearing excessive fire of liver-gallbladder based on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF/MS) metabolomics and molecular docking. MethodUPLC-Q-TOF/MS metabolomics was used to analyze the chemical constituents of Coptidis Rhizoma, water-processed Coptidis Rhizoma and bile-processed Coptidis Rhizoma. Chromatographic separation was achieved with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as the mobile phase in gradient elution(0-2 min, 5%B; 2-20 min, 5%-65%B; 20-40 min, 65%-10%B; 40-45 min, 10%B; 45-46 min, 10%-95%B; 46-49 min, 95%B), and electrospray ionization(ESI) was applied and operated in positive and negative ion modes, the acquisition range was m/z 80-1 200. Based on this, partial least squares-discriminant analysis(PLS-DA) and variance analysis were used to screen the differential compounds among the three products of Coptidis Rhizoma. Network pharmacology and molecular docking were used to verify the degree of association between differential compounds and excessive fire of liver-gallbladder syndrome. ResultA total of 33 chemical constituents were identified, including 2 phenolic acids, 5 binding bile acids and 26 alkaloids. And 16 differential compounds were identified by multivariate statistical analysis, including 11 alkaloids and 5 binding bile acids. Pathway enrichment analysis in the Kyoto Encyclopedia of Genes and Genomes(KEGG) database yielded 8 pathways related to excessive fire of liver-gallbladder, and the key protein phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform(PIK3CA) was obtained according to the "component-target-pathway" network analysis. Molecular docking results showed that 11 alkaloids had good binding ability with PIK3CA. ConclusionPorcine bile is unique in the processing of bile-processed Coptidis Rhizoma, which can promote the production and dissolution of 11 alkaloids, including berberine and dihydrochelerythrine. Based on the results of molecular docking and reported pharmacological experiments, it can be concluded that 16 different compounds such as berberine, dihydrochelerythrine and taurohyodeoxycholic acid are the material basis of bile-processed Coptidis Rhizoma.

19.
Chinese Journal of Biologicals ; (12): 987-991, 2023.
Article in Chinese | WPRIM | ID: wpr-996570

ABSTRACT

@#Objective To determine the cetrimonium bromide(CTAB)residue in polysaccharide vaccines using ultra performance liquid chromatography-mass spectrometry(UPLC/MS-MS),and analyze and evaluate the uncertainty of the determination results.Methods By establishing a mathematical model,the sources and values of uncertainty introduced in the measurement process were analyzed,the uncertainty components of each influencing factor were calculated,and the standard uncertainty and expanded uncertainty were synthesized to form an uncertainty report.Results At 95% confidence interval,the expanded uncertainty was 0. 002 8 mg/kg. The determination result of CTAB residue in polysaccharide vaccine was reported as(1. 000 6 ± 0. 002 8)mg/kg(k = 2,confidence interval p = 95%).Conclusion The main factors affecting the accuracy of determination results are the preparation of standard solution and the introduction of recovery rate,which should be focused on and controlled in the experiment process to make the detection results more reliable.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-12, 2023.
Article in Chinese | WPRIM | ID: wpr-969593

ABSTRACT

ObjectiveTo characterize the chemical constituents of Dayuanyin based on ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap MS). MethodThe detection was performed on a Thermo Acclaim™ RSLC 120 C18 column(2.1 mm×100 mm, 2.2 μm), the mobile phase was acetonitrile(A)-0.1% formic acid aqueous solution(B) for gradient elution (0-7.5 min, 10%-19%A; 7.5-12 min, 19%-22.5%A; 12-23 min, 22.5%-27%A; 23-27 min, 27%-56%A; 27-35 min, 56%-84%A; 35-36 min, 84%-90%A), the flow rate was 0.3 mL·min-1, and the column temperature was 30 ℃. The data were collected in the positive and negative ion modes by heated electrospray ionization(HESI), and the detection range was m/z 80-1 200. Combining the retention time of the reference substance, fragment ions, databases such as PubChem and related literature, Xcalibur 3.0 was used to identify the chemical constituents of Dayuanyin. ResultA total of 161 compounds were identified, including 14 alkaloids, 60 flavonoids, 16 terpenoids, 26 saponins, 18 phenylpropanoids, 16 organic acids and 11 others. ConclusionThe established method can effectively and quickly identify the chemical components in Dayuanyin, and clarify its chemical composition, which can provide a basis for the development of compound preparations of this famous classical formula.

SELECTION OF CITATIONS
SEARCH DETAIL